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Abstract: The importance of Bioinformatics tools and methodology in modern biological research underscores the 

need for robust and effective courses at the college level.  This paper describes such a course designed on the 

principles of cooperative learning based on a computer software industry production model called ―Extreme 

Programming‖ (EP). The classroom version of EP included: working in pairs, switching roles between labs, partner 

interdependence and individual accountability. New pairings were created at random each week and at the 

completion of each lab, students (n=18) indicated their satisfaction and frustration levels with working with partners, 

the materials, and the technology. We used a Repeated Measures-ANOVA (RM-ANOVA) statistical design to 

provide statistical power with a modest number of subjects. Students consistently rated working with a pair highest 

in terms of both ease and satisfaction, regardless of prior programming and technology experience. We found no 

differences in reported ease or satisfaction between undergraduate and graduate students, or between students with 

prior experience with technology. Surprisingly, we found that students rated the more difficult computer 

programming part of the course higher than the web-based exercises. The Extreme Programming cooperative model 

appears to be very appropriate for Bioinformatics classes, and can be easily implemented in computational labs to 

enhance student satisfaction and potentially maximize the use of computer workstations. 
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Introduction 

 

 Bioinformatics has become an integral facet of 

modern biological research. Academics and 

biotechnology companies rely heavily on a vast 

assortment of bioinformatics tools to analyze a virtual 

flood of biological data, from genome sequence to x-

ray crystal structures, being dumped into computer 

databases (Kaminski, 2000). Bioinformatics tools are 

used to perform DNA and protein sequence searching 

(Altschul et al., 1997), sequence alignment (Chenna et 

al., 2003), molecular structure prediction (Akmaev et 

al., 1999; Chivian et al., 2005), evolutionary 

relationship analysis (Ronquist and Huelsenbeck, 

2003), gene expression (Slonim, 2002), and many other 

applications to generate or test hypotheses. The recent 

development of simple, yet powerful, programming 

languages (e.g., Perl and Python) has also opened the 

door for biologists with little formal computer science 

education to develop functional bioinformatics 

software (Gentleman et al., 2004). Biotechnology 

companies have invested heavily in bioinformatics 

research, and scientists trained in bioinformatics 

software tools and/or programming are often hot 

commodities in the biotechnology industry.  

 The importance of bioinformatics tools and 

methodology in modern biological research 

underscores the need for robust and effective courses in 

college level bioinformatics. In our experience, 

however, the typical biology student has limited 

exposure to computational biology and little or no 

programming background. Indeed, we often find that 

both undergraduate and graduate biology students 

express some distaste for computer work. Given the 

increasing emphasis placed on bioinformatics and 

technology in biological research, it is therefore 

important to provide an educational experience that 

maximizes learning and fosters student motivation.  

 In computer labs at the college level, students 

typically work on their own computers to learn 

software or write programming code. This is true of all 

the biology computer lab courses (e.g., bio-statistics, 

conservation ecology, and population genetics) at San 

Diego State University where the study took place. 

However, numerous studies of cooperative learning 

have clearly shown the advantages of working in pairs 

or groups in terms of both learning outcomes and 

interest levels for science and mathematics courses. 

Slavin (1996) described cooperative learning as ‗one of 

the greatest success stories in the history of educational 

research‘ (p. 1) because so much research has tied 

cooperative learning to achievement gains.  Slavin‘s 

review of 99 studies on cooperative learning and 

achievement in K-12 school environments found that
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 78% of the cooperative learning groups outperformed 

the control groups in terms of student achievement.  In 

their meta-analysis of studies on cooperative learning 

in science, mathematics, engineering and technology 

(SMET) courses at the college level, Springer, Stanne, 

and Donovan (1999) found significant positive effects 

on achievement, persistence and attitude in students 

engaged in small learning groups compared to students 

who were not.  They estimated that the effect of small 

group learning on achievement would increase a 

student‘s grade on a standardized (norm referenced) 

test from the 50
th

 to the 70
th

 percentile and the effect of 

group work on increased student persistence would 

reduce attrition from SMET courses and programs by 

22%.  

 Given the clear potential benefits of 

cooperative learning, our aim was to develop and 

evaluate a novel cooperative learning approach for 

bioinformatics at the college level. In this study, we 

focused on the effectiveness of cooperative learning on 

student motivation, per se, rather than on learning. 

Motivation appeared to be a particular concern with 

biology students not naturally inclined towards 

computer work, and the students scored highly on all 

the course exams this semester and in previous years, 

indicating that they had mastered basic Bioinformatics 

concepts. We based our cooperative learning approach 

on a new software development model used in the 

computer industry called ‗Extreme Programming‘ 

(EP). The EP model, described as a ‗deliberate and 

disciplined approach to software development‘ (Wells, 

2001), is characterized by a set of simple rules and 

practices associated with all phases of development 

from planning to execution.  What makes this model 

different from others is that programmers work in 

pairs, with several pairs working to find solutions to 

the same project/problem or pieces of the problem.  

The process stresses communication and teamwork and 

appears ideally suited for a hands-on bioinformatics lab 

course, in which students could be paired at a single 

computer. 

EP claims several key advantages to solo programming 

approaches: 1) increased problem-solving capacity; 2) 

higher likelihood and greater rapidity of error-catching; 

and 3) more engaging and productive work experience. 

These touted advantages in workplace productivity 

appear remarkably similar to the educational benefits 

observed in cooperative group learning approaches. 

Many instructors assume that when students 

are working in groups or with partners that the students 

are engaging in cooperative group work. In fact, to reap 

the benefits of group work, attention to the structure of 

the group and the type of task required is 

critical. According to Johnson and Johnson (1994), 

cooperative learning has four basic elements: 1) group 

members work toward a common goal, resulting in 

interdependence; 2) students interact to solve 

problems; 3) a component of individual accountability 

is built in to the lesson or course to assure that all 

students master the content being taught; and 4) 

interpersonal and small group skills are 

developed. Cohen (1994) added two more necessary 

elements. First, all individuals must have opportunities 

to hold high status academic positions, such as 

facilitator. And secondly, for maximum learning to 

occur, the task assigned to groups should be open-

ended, meaning that a variety of solutions are possible, 

and difficult enough so that students experience a 

‗healthy level of uncertainty‘.  

 The structure of the bioinformatics class run 

by one of the authors (Kelley) was designed to 

encompass almost all of the requisite elements of 

effective group work.  Interdependence was established 

by having both members of each pair earn the same 

grade for each lab.  The success of one student was 

determined by the success of the partnership.  The 

students were provided considerable opportunity to talk 

face-to-face to solve problems.  In addition to group 

grades, each student took quizzes and wrote papers 

independently, creating individual accountability.  

Each pair worked together on two labs a week and they 

shared a computer to accomplish each task.  One 

student worked at the computer while the other 

observed as they problem-solved.  The students were 

required to switch roles for each lab.  In the first half of 

the course, students learned how to use a series of 

complex, but highly useful, bioinformatics tools for 

analyzing biological data. In the second half of the 

course, the students were taught the fundamentals of 

computer science in the Python programming language 

and applied this language to the analysis of sequence 

data.  These first labs were more ‗cut and paste‘ as 

opposed to the labs in the second half of the semester, 

which were open-ended, and by the students‘ own 

admission, more difficult. 

After designing the course based on best 

teaching practices, we developed a survey given after 

every lab to answer to the following questions: 

1.)  What was the satisfaction of working 

with a partner relative to lecture and 

technology? 

2.) How effective was the paired learning 

approach under increasingly high levels 

of uncertainty? 

3.) How did past experience with technology 

and student grade level (undergraduate or 

graduate) affect the learning experience? 

4.) Did a decrease in comfort level with the 

material or the technology decrease 

satisfaction of working with a partner?  

Due to the limited number of student 

respondents, we used a statistical design known as a
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 Repeated Measures ANOVA (RM-ANOVA; 

see Materials and Methods), a methods routinely used 

with studies including small sample sizes, such as 

clinical trials. Statistical analysis of survey responses 

answered all of the above questions in a 

straightforward manner and helped us determine the 

effectiveness of the EP cooperative learning model for 

Bioinformatics.  

Materials and Methods 

Data Collection and Participants 

 

Data were collected using lab evaluation 

surveys (Table 1) during S. Kelley‘s bioinformatics 

course in the spring of 2005 at San Diego State 

University. The course participants included 8 female 

students and 10 male students (45% female). Of these, 

11 out of 18 students (>60%) had non-European 

ancestry, and 7 were undergrads, while the rest were 

Master‘s students. The course was taught in a 

―lecture/lab‖ format. Prior to the lab, the teacher 

(Kelley) would teach a lecture on the algorithms or 

concepts underlying the particular exercise. For 

example, in the non-Python section the students might 

be taught a DNA sequence comparison algorithm and 

then use the algorithm to compare two novel sequences 

on pen-and-paper. In the Python section, the students 

might be taught a basic programming concept, such as 

the logic behind an ―if/else‖ statement. Following this 

short lecture and exercise (usually lasting about 30-45 

minutes) the students would then pair up at a computer 

and complete an exercise written by the instructor 

related to the lecture material. After the lecture on 

sequence comparison, the students would complete a 

lab exercise using web-based software implementing 

the algorithm for comparing two sequences, and after 

the ―if/else‖ lecture, the students would write a Python 

program that used ―if/else‖ statement. 

 

Table 1. Sample survey completed by students after each lab. 

Name or Red ID ____________ Partner Name ___________Lab # ____ Date _____ 

Place an X next to your student status: Undergraduate ___ Graduate ___  student. 

 

I. On a scale of 1 (extremely frustrating) to 10 (not frustrating at all) rate your frustration level with 

elements of the lab.  Please write the rating in the space provided. 

 

Extremely Frustrating                         Not Frustrating at all  

    1     2     3     4     5     6     7     8     9     10 

_____  material being studied  _____  working with a partner  _____  technology 

II. On a scale of 1 (extremely dissatisfying) to 10 (very satisfying) rate your satisfaction with the lab 

experience.  Please write the rating in the space provided. 

 

Extremely Dissatisfying                        Very Satisfying 

    1     2     3     4     5     6     7     8     9     10 

_____  material being studied  _____  working with a partner  _____  technology 

 

III. Place an X next to the statement that best describes your familiarity with the software 

_____ I am very familiar with the software used for this lab. 

_____ I am not familiar with the software, but have successfully used similar software. 

_____ I am not familiar with the software. 

IV. Is there anything else you would like to communicate about your lab experience? 

 

 

After each lab students were asked to 

complete a short survey indicating their level of ease 

and their level of satisfaction with the study material, 

the computer technology, and their partner. The 

―material‖ part referred to the written exercise the 

students worked on with the partner at the computer, 

while the ―computer technology‖ referred to the web-

based software or the Python programming 

environment. An example of the survey is shown in 

Table 1. The surveys were placed in an envelope which 

was stored unopened until the end of the semester after 

all the grades for the course had been assigned. 

Students were assured that no one would look at the 

survey results until after assignment of final grades. 

Statistical Methods 

We used one-way ANOVAs to test for 

significant difference in over all mean scores among 

labs, between undergraduate and graduate students, and
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 between students with previous experience or 

no previous experience in overall mean scores. Survey 

scores were also analyzed using a 3-way RM-ANOVA. 

RM-ANOVA methods provide a powerful means of 

providing statistical power with a modest number of 

subjects. Many published RM-ANOVA designs use 

modest numbers of subjects. Case studies provided by 

Quinn and Keogh (2002) include samples sizes 

comparable to the present study:  n=12, 20 and 24 

subjects. According to Quinn and Keough, ―The main 

aim of these [RM] designs is to reduce the unexplained 

variation (MS residual) …They offer more powerful 

tests of the null hypothesis of interest, with no increase 

in the overall resources needed for the experiment 

(p.262).‖ According to Munro (2004), ―Each subject 

[serves] as his or her own control, and the within or 

error variance [is] decreased. This [results] in a more 

powerful test and [decreases] the number of subjects 

needed for the study (Page 214).‖ The proven ability of 

Repeated Measure approaches to provide statistical 

power in studies with modest samples sizes similar to 

our own, gave us confidence in interpreting our 

statistical results. 

Lab exercises were highly variable in content 

and were treated as the repeated measures. Data 

normality and homogeneity of variances were tested 

and confirmed using graphical methods. We used an 

Expectation Maximization (EM) algorithm, based on 

the work of Little and Rubin (1987), to impute missing 

values in student survey responses. Missing values 

comprised approximately 15% of the dataset. The EM 

method used a maximum likelihood approach to 

estimate the expected values based on the observed 

data (i.e., student responses for other labs). The 3-

factors in the RM-ANOVA included: (1) Lab Type 

(Non-Python vs. Python); (2) Education Component 

(Materials vs. Pairs vs. Technology); and (3) 

Questionnaire (Ease vs. Satisfaction). Paired T-Tests, 

in which survey data for each student was kept as a 

separate response variable, were used to compare mean 

differences in survey responses overall scores for 

Material, Partner and Technology. These tests were 

divided by lab type (Python and Non-Python) and 

question type (Ease and Satisfaction). The Paired T-

Test approach is especially useful for situations with 

high among-subject variability, such as patients in 

clinical drug trials. 

 

Results 

 

 This study made 96 observations on each of 

the 18 individuals (6 measures for each of 16 labs). 

This means that a total of 1728 observations were 

collected, a sizeable number by any measure and an 

indication of how Repeated Measure designs allow for 

strong conclusions with modest subject numbers. The 

analysis used the average of 8 labs for each metric. 

Thus we have 16 (size n=8) averages in the RM 

analysis (288 averages). The averages are more 

normally distributed than the raw value (central limit 

theorem) providing better fit to the assumption of 

normality. One-way ANOVAs found significant 

differences in overall scores among labs, but no 

significant differences between undergraduate and 

graduate students or any effect of previous experience 

on survey responses. For main effects, we found highly 

significant differences in the survey responses between 

Python and Non-Python labs (Table 2: F1,17=14.348; 

P=0.001) and among the different types of educational 

components (Table 2: F2,34=15.906; P<0.001) 

Materials, Pairs and Technology). We did not find 

significant differences between the survey response in 

terms of question type (Ease and Satisfaction). There 

were also significant 2-way interactions between lab 

type and educational component (Table 2: 

F2,34=11.728; P<0.001), as well as between educational 

component and question type (Table 2: F1,17=14.348; 

P=0.001), but not between lab type and questions type. 

No significant 3-way interactions were detected. 
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Table 2. Three-way repeated-measures ANOVA on student survey scores. 

Repeated Measures ANOVA

Source Sums-Sq df Mean-Sq F P H-F
†
 P

Main Effects

Lab Type (Lab)
1

10.893 1 10.893 14.348 0.001 .

Error 12.907 17 0.759

Educational Component (Comp)
2

31.812 2 15.906 15.284 < .001 < .001

Error 35.384 34 1.041

Questionnaire Type (Ques)
3

1.423 1 1.423 0.936 0.347 .

Error 25.846 17 1.520

2-way Interactions

Lab * Comp 5.819 2 2.910 11.728 < .001 0.001

Error 8.435 34 0.248

Lab * Ques 0.680 1 0.680 3.083 0.097 .

Error 3.751 17 0.221

Comp * Ques 6.973 2 3.486 3.518 0.041 0.041

Error 33.694 34 0.991

3-way Interaction

Lab * Comp * Ques 0.482 2 0.241 1.850 0.173 0.173

Error 4.427 34 0.130

1 
Lab Type (Python, Non Python)

2 
Educational Component (Material, Pairs, Technology)

3 
Questionnaire (Satisfaction, Frustration)

† 
Huynh-Feldt corrected P value

 
 

 Plots of 4 individual student responses 

illustrated the tremendous student variability in survey 

responses over the course of the semester (Figure 1). 

Paired T-tests found significant differences in the mean 

responses for Materials, Pairs and Technology in both 

Python and Non-Python labs (Fig. 2, 3). In general, the 

scores for Pairs were highest, followed by Technology 

then Materials. However, Technology and Pairs scored 

almost equally well in their Satisfaction scores for the 

Python labs and students also found the Non-Python 

technologies less satisfying than the lecture materials 

for the Non-Python labs. Figure 2 shows a transition 

graph for all 18 students, along with the mean scores 

and standard errors, for one of the Paired T-tests (Non-

Python, Satisfaction survey scores), while figure 3 

reports the mean responses for all the Paired T-tests 

without individual student responses. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Graph showing the Satisfaction scores for 

four representative students for all 16 labs. This subset 

of students spans both the Grad/Undergrad and the 

Level of Familiarity before the class. The chart 

illustrates the considerable variability among students 

and labs. 
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Figure 2. Transition graph showing average 

Satisfaction with NonPython Labs. Responses of all 18 

students are represented by the thin lines, and the thick 

line connects  the mean and standard errors for the 

groups, indicating how they differ among Materials, 

Partner and Technology. 
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Discussion 

 

The survey was a highly sensitive indicator of 

student frustration and satisfaction with the course, 

despite the apparent simplicity of the survey design. 

Most of the students scored all aspects of each lab 

above 50%.  However, within this range there was a 

considerable variability and strong differences among 

both students and labs in terms of survey scores. Figure 

1 illustrates the typical responses of four individual 

students over the course of the semester. As expected, 

there was highly significant lab-to-lab variability, 

which reflected the wide diversity of exercises 

presented to the students, particularly in the Non-

Python exercises.  

Encouragingly, we found no differences in 

responses between students with or without previous 

experience with the technology (either the web tools or 

programming experience) or between undergraduates 

and graduate students. This finding mirrors personal 

observations made by the instructor in the course. 

Many of the bioinformatics novices were just as good 

with the bioinformatics tools and at programming as 

the ‗experts‘ and the undergraduates performed as well 

on tests as did the graduate students.  

The RM-ANOVA found highly significant 

differences between student responses to the lecture 

material, the technology and working with a partner 

(Table 2). A closer look at the data using a paired T-

test identified the strongest trend in the study: students 

consistently rated working with a partner highest in 

terms of both Ease and Satisfaction, and in both Python 

and Non-Python labs (Figure 3). Clearly, the aspect of 

collaboration was highly valued and the EP cooperative 

model appears to be very appropriate for 

Bioinformatics classes. Although we did not directly 

evaluate the impact of the EP model on student 

learning, cooperative learning has a long track record 

of boosting student achievement in SMET courses and 

student satisfaction is also correlated with performance. 

From an instructor perspective, there were two other 

enormous advantages to using the EP model. First, the 

students had someone to help troubleshoot problems, 

reducing their reliance on the instructor to answer 

questions. Second, EP effectively doubles the number 

of students who can take the course, which is an 

important concern given the extremely limited 

computer resources on campus. 

The RM-ANOVA analysis also uncovered 

highly significant differences in student responses 

between Python and Non-Python labs (Table 2). The 

survey results appear to reflect the extremely different 

character of the material taught in the two halves of the 

course. Somewhat to our surprise, we found that these 

biology students tended to favor the Python 

programming section of the course over the Non-

Python section (Figure 3). Although many of the 

students expressed trepidation about the programming 

section prior to the start of the course, and many 

expressed considerable frustration about programming 

during lab exercises, overall they seemed to find 

working the simpler ‗cut and paste‘ labs more 

frustrating than the open-ended Python labs. This 

would suggest that students want to engage in more 

demanding work and that doing so with a partner 

enhances the experience.  

 The students appeared to be especially pleased 

with the Python technology (Figure 3), a fact that 

speaks well for the Python language as a learning tool 

since many students had no prior programming 

experience. The high overall survey scores appeared to 

confirm the students‘ general interest in bioinformatics 

and programming per se. This is especially important 

in light of the fact that 45% of the class was female and 

60% had non-European heritage. Indeed, many of the 

students appeared to have considerable latent abilities 

with programming (S. Kelley, pers. obs.) and 

apparently just needed an opportunity and the right 

environment to express their talents. We suggest that 

the non-competitive EP cooperative learning model, 

combined with easy syntax of the Python programming 

language and an interesting application (Biology), 

opens the door to computer education for students who 

otherwise might never try such a class.
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Figure 3. Transition graph showing the average scores 

with standard error bars for Materials, Pairs and 

Technology. The scores are broken down by Ease and 

Satisfaction, as well as by Python and Non-Python 

labs. 
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Even though we have 30 years of research on 

the positive effects of group-work (Slavin, 1995), 

higher education has ‗yet to respond to calls for greater 

opportunities for collaboration and cooperation in 

SMET (science, mathematics, engineering and 

technology) courses and programs‘  (National Science 

Foundation, 1996).  Professors continue to implement 

teacher centered teaching styles that focus on 

transmitting knowledge to passive learners.  This 

traditional lecture model of teaching does not engage 

students or reflect what it is scientists will be expected 

to do once they enter the workforce, whether it be on a 

campus or out in the field (Arch, 1998; Springer et al., 

1999).  By adapting the Extreme Programming model 

to the bioinformatics class, we believe we have created 

a student-centered class that required the learner to 

engage with the material and his or her classmates.  In 

the process of learning the content, the students learned 

the value of collaboration in problem-solving that will 

be needed in the workplace.   

Limitations of the study and directions for further 

research 

 The two greatest limitations of this study were 

the lack of a control or comparison group. Given the 

small number of students enrolled in the course, we 

believed that dividing the class into experimental and 

control groups would have yielded insufficient data and 

would have deprived students of potential benefits of 

cooperative learning. Also, there already exists a 

plethora of research connecting achievement and 

cooperative learning, so the first priority was to 

establish a cooperative learning model that works well 

in the context of a bioinformatics class (or college 

computer classes in general).  Controls are certainly the 

best way to judge learning and achievement, per se, but 

the focus of this study was on the effect of cooperative 

learning strategies on student motivation in a computer 

class. Thus, we plan to carry out a long term study on 

this continuing course that uses ―fortuitous controls‖, 

which would be times when someone‘s partner does 

not show up for a lab and they are forced to work by 

themselves. We are still working out the details of how 

this might be accomplished.  Additionally, qualitative 

data such as student interviews and longitudinal follow 

up with participants could yield greater understanding 

of the long-term effects of the use of the Extreme 

Programming model in Bioinformatics classes.  
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